
Infrastructure as
Code
Brian takes note.
See page 10.

Fourth International
SQL Challenge
From the archive.
See page 22.

Disaster Recovery
The past, the present, and the
future.
See page 4.

Much more inside . . .

Disaster Recovery

Vol. 33, No. 1 · FEBRUARY 2019

http://www.nocoug.org

The New Phoenix by Axxana
For Oracle Databases and Applications

• Low Cost Replication Lines
• Shortest Recovery Time
• Full Consistency Across Multiple Databases

www.axxana.com

Zero Data Loss
at Unlimited Distances

Synchronous Protection
at Maximum Performance

http://www.axxana.com

3The NoCOUG Journal

2019 NoCOUG Board

Dan Grant
Exhibitor Coordinator

Eric Hutchinson
Webmaster

Iggy Fernandez
President, Journal Editor

Kamran Rassouli
Social Director

Liqun Sun
Membership Director

Michael Cunningham
Director of Special Events

Naren Nagtode
Secretary, Treasurer, President Emeritus

Dan Morgan
Director of Publicity and Marketing

Saibabu Devabhaktuni
Conference Chair

Tu Le
Speaker Coordinator

Volunteers

Tim Gorman
Board Advisor

Brian Hitchcock
Book Reviewer

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer
ence. Ar ti cle sub missions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Special Feature ... 4

Brian’s Notes .. 10

Special Feature ... 16

Sponsor Message ..19

From the Archive ... 22

Picture Diary ... 26

ADVERTISERS

Axxana ... 2

Vexata .. 27

Quest ... 27

OraPub .. 28

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12year period.

Next, the Journal is professionally copyedited and proofread by veteran copy

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Franciscobased Giraffex.

And, finally, the Journal is printed and shipped to us. s

http://nocoug.org
http://nocoug.org
mailto:journal@nocoug.org
mailto:journal@nocoug.org
http://www.giraffex.com
http://www.giraffex.com
http://www.giraffex.com

4 February 2019

S P E C I A L
F E AT U R E

Disaster Recovery: Past,
Present, and Future

by Alex Winokur

Introduction
Disaster recovery is now on the list of top concerns of every

CIO. In this article we review the evolution of the disaster recov
ery landscape, from its inception until today. We look at the cur
rent understanding of disaster behavior and, as a result, the
disaster recovery processes. We also try to cautiously anticipate
the future, outlining the main challenges associated with disaster
recovery.

The Past
The computer industry is relatively young. The first commer

cial computers appeared somewhere in the 1950s—not even 70
years ago. The history of disaster recovery (DR) is even younger.
Table 1 outlines the appearance of the various technologies nec
essary to construct a modern DR solution.

From Magnetic Tapes to Data Networks
The first magnetic tapes for computers were used as input/

output devices. That is, input was punched onto punch cards that

were then stored offline to magnetic tapes. Later, UNIVAC I, one
of the first commercial computers, was able to read these tapes
and process their data. Later still, output was similarly directed
to magnetic tapes that were connected offline to printers for
printing purposes. Tapes began to be used as a backup medium
only after 1954, with the introduction of the mass storage device
(RAMAC).

Although modern widearea communication networks date
back to 1974, data has been transmitted over longdistance com
munication lines since 1837 via telegraphy systems. These teleg
raphy communications have since evolved to data transmission
over telephone lines using modems.

Modems were widely introduced in 1958 to connect United
States air defense systems; however, their throughput was very
low compared to what we have today. The FAA clustered system
deployed communication that was designed for computers to
communicate with their peripherals (e.g., tapes). Localarea net
works (LANs) as we now know them had not been invented yet.

Alex Winokur

 Technology Introduced Comments

Long-distance data transmission over 1837 First commercial telegraphy systems
electrical lines

Magnetic tapes 1928 Magnetic tapes for voice recording; first used for computers
 with UNIVAC I in 1952

Uninterruptible power supply (UPS) 1934 Grant date of rotary UPS patent

First commercial computer in the 1952 UNIVersal Automatic Computer (UNIVAC I)
United States

First mass storage system 1956 IBM 305 RAMAC (i.e., Random Access Method of Accounting
 and Control) with capacity of 5 MB

First mass production computer 1964 IBM 360

First commercially clustered system 1970 IBM 360 clustered system for the Federal Aviation
 Administration (FAA)

First commercial data network 1974 X.25 wide-area network (WAN) protocol developed for
 telephone companies

Table 1. Early history of DR technology development

5The NoCOUG Journal

Figure 1. IBM 305 RAMAC at U.S. Army Red River Arsenal.
Foreground: two 350 disk drives. Background: 380 console and
305 processing unit

Early Attempts at Disaster Recovery
It wasn’t until the 1970s that concerns about disaster recovery

started to emerge. In that decade, the deployment of IBM 360
com puters reached a critical mass, and they became a vital part of
almost every organization. Until the mid1970s, the perception
was that if a computer failed, it would be possible to fail back to
paperbased operation as was done in the 1960s. However, the
widespread rise of digital technologies in the 1970s led to a cor
responding increase in technological failures on one hand, while
on the other hand, theoretical calculations, backed by realworld
evidence, showed that switching back to paperbased work was
not practical.

The emergence of terrorist groups in Europe like the Red
Brigades in Italy and the BaaderMeinhof Group in Germany
further escalated concerns about the disruption of computer
operations. These organizations specifically targeted financial
institutions. The fear was that one of them would try to blow up
a bank’s data centers.

At that time, communication networks were in their infancy,
and replication between data centers was not practical.

Parallel workloads. IBM came up with the idea to use the
FAA clustering technology to build two adjoining computer
rooms that were separated by a steel wall and had one node clus
ter in each room. The idea was to run the same workload twice
and to be able to immediately fail over from one system to the
other in case one system was attacked. A closer analysis revealed
that in a case of a terror attack, the only surviving object would
be the steel wall, so the plan was abandoned.

Hot, warm, and cold sites. The inability of computer vendors
(IBM was the main vendor at the time) to provide an adequate
DR solution made way for dedicated DR firms like Sungard AS
to provide hot, warm, or cold alternate sites. Hot sites, for ex
ample, were duplicates of the primary site; they independently
ran the same workloads as the primary site, as communication
between the two sites was not available at the time. Cold sites
served as repositories for backup tapes. Following a disaster at
the primary site, operations would resume at the cold site by al
locating equipment, executing a restore from backup operations,
and restarting the applications. Warms sites were a compromise
between a hot site and a cold site. These sites had hardware and
connectivity already established; however, recovery was still

done by restoring the data from backups before the applications
could be restarted.

Backups and high availability. The major advances in the
1980s were around backups and high availability. On the backup
side, regulations requiring banks to have a testable backup plan
were enacted. These were probably the first DR regulations to be
imposed on banks; many more followed through the years. On
the high availability side, Digital Equipment Corporation (DEC)
made the most significant advances in LAN communications
(DECnet) and clustering (VAXcluster).

The Turning Point
On February 26, 1993, the first bombing of the World Trade

Center (WTC) took place. This was probably the most signifi
cant event shaping the disaster recovery solution architectures of
today. People realized that the existing disaster recovery solutions,
which were mainly based on tape backups, were not sufficient.
They understood that too much data would be lost in a real disas
ter event. By this time, communication networks had matured,
and EMC became the first to introduce a storagetostorage rep
li cation software called Symmetrix Remote Data Facility (SRDF).

The first few years of the 21st century will always be remem
bered for the events of September 11, 2001—the date of the
complete annihilation of the World Trade Center. Government,
industry, and technology leaders realized then that some disasters
can affect the whole nation, and therefore DR had to be taken
much more seriously. In particular, the attack demonstrated that
existing DR plans were not adequate to cope with disasters of such
magnitude. The notion of local, regional, and nationwide disasters
crystalized, and it was realized that recovery methods that work
for local disasters don’t necessarily work for regional ones.

SEC Directives
In response, the Securities Exchange Commission (SEC) is

sued a set of very specific directives in the form of the “Interagency
Paper on Sound Practices to Strengthen the Resilience of the
U.S.” These regulations, still intact today, bind all financial insti
tutions. The DR practices that were codified in the SEC regula
tions quickly propagated to other sectors, and disaster recovery
became a major area of activity for all organizations relying on IT
infrastructure.

The essence of these regulations is as follows:

 1. The economic stance of the United States cannot be com
promised under any circumstance.

Behind the Scenes at IBM

A
t the beginning of the 1990s, I was with IBM’s research
division. At the time, we were busy developing an in-
novative solution to shorten the backup window, as
backups were the foundation for all DR, and the exist-

ing backup windows (dead hours during the night) started to be
insufficient to complete the daily backup. The solution, called
“concurrent copy,” was the ancestor of all snapshotting tech-
nologies, and it was the first intelligent function running within
the storage subsystem. The WTC event in 1993 left IBM fighting
the “yesterday battles” of developing a backup solution while
giving EMC the opportunity to introduce storage-based replica-
tion and become the leader in the storage industry.

6 February 2019

 2. Relevant financial institutions are obliged to correctly,
without any data loss, resume operations by the next busi
ness day following a disaster.

 3. Alternate disaster recovery sites must use different physi
cal infrastructure (electricity, communication, water, trans
portation, and so on) than the primary site.

Note that Requirements 2 and 3 above are somewhat contra
dictory. Requirement 2 necessitates synchronous replication to
facilitate zero data loss, while Requirement 3 basically dictates
long distances between sites—thereby making the use of syn
chronous replication impossible. This contradiction is not ad
dressed within the regulations and is left to each implementer to
deal with at its own discretion.

The secret to resolving this contradiction lies in the ability to
reconstruct missing data if or when data loss occurs. The nature
of most critical data is such that there is always at least one other
instance of this data somewhere in the universe. The trick is to
locate it, determine how much of it is missing in the database,
and augment the surviving instance of the database with this
data. This process is called “data reconciliation,” and it has be
come a critical component of modern disaster recovery. [See The
Data Reconciliation Process sidebar.]

The Present
The second decade of the 21st century has been characterized

by new types of disaster threats, including sophisticated cyberat
tacks and extreme weather hazards caused by global warming. It
is also characterized by new DR paradigms, like DR automation,
disaster recovery as a service (DRaaS), and activeactive config
urations.

These new technologies are for the most part still in their in
fancy. DR automation tools attempt to orchestrate a complete site
recovery through invocation of one “site failover” command, but
they are still very limited in scope. A typical tool in this category

is the VMware Site Recovery Manager (SRM). DRaaS attempts to
reduce the cost of DRcompliant installation by locating the sec
ondary site in the cloud. The new activeactive configurations try
to reduce equipment costs and recovery time by utilizing tech
niques that are used in the context of high availability—that is, to
recover from a component failure rather than a complete site
failure.

Disasters vs. Catastrophes
The following definitions of disasters and disaster recovery

have been refined over the years to make a clear distinction be
tween the two main aspects of business continuity: high avail
ability protection and disaster recovery. This distinction is
important because it crystalizes the difference between disaster
recovery and a single component failure recovery covered by
highly available configurations, and in doing so also accounts for
the limitations of using activeactive solutions for DR.

A “disaster” in the context of IT is either a significant adverse
event that causes an inability to continue operation of the data
center or a data loss event where recovery cannot be based on
equipment at the data center. In essence, “disaster recovery” is a
set of procedures aimed at resuming operations following a di
saster by failing over to a secondary site.

From a DR procedures perspective, it is customary to classify
disasters into 1) regional disasters like weather hazards, earth
quakes, floods, and electricity blackouts, and 2) local disasters
like local fires, onsite electrical failures, and cooling system fail
ures.

Over the years, I have also noticed a third, independent clas
sification of disasters. Disasters can also be classified as catastro
phes. In principal, a “catastrophe” is a disastrous event where in
the course of a disaster, something unexpected happens that
causes the disaster recovery plans to dramatically miss their ser
vice level agreement (SLA); that is, they typically exceed their
RTO.

The Data Reconciliation Process

I
f data is lost as a result of a disaster, the database becomes mis aligned with the real world. The longer this misalignment exists,
the greater the risk of application inconsistencies and operational disruptions. Therefore, following a disaster, it is very impor-
tant to align back the databases with the real world as soon as possible. This process of alignment is called “data reconciliation.”

The reconciliation process has two important characteristics:

1. It is based on the fact that the data lost in a disaster exists somewhere in the real word, and thus it can be
reconstructed in the database.

2. The duration and complexity of the reconciliation is proportional to the recovery point objective (RPO); that is, it’s
proportional to the amount of data lost.

One of the most common misconceptions in disaster recovery is that RPO (for example, RPO = 5) refers to how many minutes of
data the organization is willing to lose. What RPO really means is that the organization must be able to reconstruct and reconsolidate
(i.e., reconcile) that last five minutes of missing data. Note that the higher the RPO (and therefore, the greater the data loss), the
longer the recovery time objective (RTO) and the costlier the reconciliation process. Catastrophes typically occur when RPO is compro-
mised and the reconciliation process takes much longer.

In most cases, the reconciliation process is quite complicated, consisting of time-consuming processes to identify the data gaps and
then resubmitting the missing transactions to realign the databases with real-world status. This is a costly, mainly manual, error-
prone process that greatly prolongs the recovery time of the systems and magnifies risks associated with downtime. s

7The NoCOUG Journal

When DR procedures go as planned for regional and local
disasters, organizations fail over to a secondary site and resume
operations within predetermined parameters for recovery time
(i.e., RTO) and data loss (i.e., RPO). The organization’s SLAs,
business continuity plans, and risk management goals align with
these objectives, and the organization is prepared to accept the
consequent outcomes. A catastrophe occurs when these SLAs are
compromised.

Catastrophes can also result from simply failing to execute the
DR procedures as specified, typically due to human errors. How
ever, for the sake of this article, let’s be optimistic and assume
that DR plans are always executed flawlessly. We shall concen
trate only on unexpected events that are beyond human control.

Most of the disaster events that have been reported in the
news recently (for example, the Amazon Prime Day outage in
July 2018 and the British Airways bank holiday outage in 2017)
have been catastrophes related to local disasters. If DR could
have been properly applied to the disruptions at hand, nobody
would have noticed that there had been a problem, as the DR
procedures were designed to provide almost zero recovery time
and hence zero downtime.

The following two examples provide a closer look at how ca
tastrophes occur.

9/11. Following the September 11 attack, several banks expe
rienced major outages. Most of them had a fully equipped alter
nate site in Jersey City—no more than five miles away from their
primary site. However, the failover failed miserably because the
banks’ DR plans called for critical personnel to travel from their
primary site to their alternate site, but nobody could get out of
Manhattan.

A data center power failure during a major snowstorm in
New England. Under normal DR operations at this organization,
the data was synchronously replicated to an alternate site. How
ever, 90 seconds prior to a power failure at the primary site, the
central communication switch in the area lost power too, which
cut all WAN communications. As a result, the primary site con
tinued to produce data for 90 seconds without replication to the

secondary site; that is, until it experienced the power failure.
When it finally failed over to the alternate site, 90 seconds of
transactions were missing; and because the DR procedures were
not designed to address recovery where data loss has occurred,
the organization experienced catastrophic downtime.

The common theme of these two examples is that in addition
to the disaster at the data center there was some additional—un
related—malfunction that turned a “normal” disaster into a ca
tastrophe. In the first case, it was a transportation failure; in the
second case, it was a central switch failure. Interestingly, both
failures occurred to infrastructure elements that were completely
outside the control of the organizations that experienced the ca
tastrophe. Failure of the surrounding infrastructure is indeed one
of the major causes for catastrophes. This is also the reason why
the SEC regulations put so much emphasis on infrastructure
separation between the primary and secondary data center.

Current DR Configurations
In this section, I’ve included examples of two traditional DR

configurations that separate the primary and secondary center,
as stipulated by the SEC. These configurations have predomi
nated in the past decade or so, but they cannot ensure zero data
loss in rolling disasters and other disaster scenarios, and they are
being challenged by new paradigms such as that introduced by
Axxana’s Phoenix. While a detailed discussion would be outside
the scope of this article, suffice it to say that Axxana’s Phoenix
makes it possible to avoid catastrophes such as those just de
scribed—something that is not possible with traditional syn
chronous replication models.

Typical DR configuration. Figure 2 presents a typical disas
ter recovery configuration. It consists of a primary site, a remote
site, and another set of equipment at the primary site, which
serves as a local standby.

The main goal of the local standby installation is to provide
redundancy to the production equipment at the primary site.
The standby equipment is designed to provide nearly seamless
failover capabilities in case of an equipment failure—not in a di

Figure 2. Typical DR configuration

8 February 2019

saster scenario. The remote site is typically located at a distance
that guarantees infrastructure independence (communication,
power, water, transportation, etc.), to minimize the chances of a
catastrophe. It should be noted that the typical DR configuration
is very wasteful. Essentially, an organization has to triple the cost
of equipment and software licenses—not to mention the in
creased personnel costs and the cost of highbandwidth com
munications—to support the configuration of Figure 2.

Traditional ideal DR configuration. Figure 3 illustrates the
traditional ideal DR configuration. Here, the remote site serves
both for DR purposes and high availability purposes. Such con
figurations are sometimes realized in the form of extended
clusters like Oracle RAC One Node on Extended Distance.
Al though traditionally considered the ideal, they are a trade
off between survivability, performance, and cost. The organi
zation saves on the cost of one set of equipment and licenses, but
it compromises survivability and performance. That’s because
the two sites have to be in close proximity to share the same
infrastructure, so they are more likely to both be affected by the
same regional disasters; at the same time, performance is com
promised due to the increased latency caused by separating the
two cluster nodes from each other.

True zero-data-loss configuration. Figure 4 represents a
costsaving solution with Axxana’s Phoenix. In case of a disaster,

Axxana’s Phoenix provides a zerodataloss recovery to any dis
tance. So, with the help of Oracle’s high availability support (Fast
Start Failover and Transparent Application Failover), Phoenix
provides functionality very similar to extended cluster function
ality. With Phoenix, however, it can be implemented over much
longer distances and with much smaller latency, providing true
cost savings over the typical configuration shown in Figure 3.

The Future
In my view, the future is going to be a constant race between

new threats and new disaster recovery technologies.

New Threats and Challenges
In terms of threats, global warming creates new weather haz

ards that are fiercer, more frequent, and far more damaging than
in the past—and in areas that have not previously experienced
such events. Terror attacks are on the rise, thereby increasing
threats to national infrastructures (potential regional disasters).
Cyberattacks—in particular ransomware, which destroys data—
are a new type of disaster. They are becoming more prolific,
more sophisticated and targeted, and more damaging.

At the same time, data center operations are becoming more
and more complex. Data is growing exponentially. Instead of get
ting simpler and more robust, infrastructures are getting more

Figure 3. DR cost-saving configuration

Figure 4. Consolidation of DR and high availability configurations with Axxana’s Phoenix

9The NoCOUG Journal

diversified and fragmented. In addition to legacy architectures
that aren’t likely to be replaced for many years, new paradigms
like public, hybrid, and private clouds; hyperconverged systems;
and softwaredefined storage are being introduced. Adding to
that are an increasing scarcity of qualified IT workers and eco
nomic pressures that limit IT spending. Combined, these factors
contribute to data center vulnerabilities and to more frequent
events requiring disaster recovery.

So, this is on the threat side. What is there for us on the tech
nology side?

New Technologies
Axxana’s Phoenix is at the forefront of new technologies that

guarantee zero data loss in any DR configuration (and therefore
ensure rapid recovery), but I will leave the details of our solution
to a different discussion.

AI and machine learning. Apart from Axxana’s Phoenix, the
most promising technologies on the horizon revolve around ar
tificial intelligence (AI) and machine learning. These technolo
gies enable DR processes to become more “intelligent,” efficient,
and predictive by using data from DR tests, realworld DR op
erations, and past disaster scenarios; in doing so, disaster recov
ery processes can be designed to better anticipate and respond to
unexpected catastrophic events. These technologies, if correctly
applied, can shorten RTO and significantly increase the success
rate of disaster recovery operations. The following examples
suggest only a few of their potential applications in various
phases of disaster recovery:

➤ They can be applied to improve the DR planning stage,
resulting in more robust DR procedures.

➤ When a disaster occurs, they can assist in the assessment
phase to provide faster and better decisionmaking re
garding failover operations.

➤ They can significantly improve the failover process itself,
monitoring its progress and automatically invoking
corrective actions if something goes wrong.

When these technologies mature, the entire DR cycle from
planning to execution can be fully automated. They carry the

promise of much better outcomes than processes done by hu
mans because they can process and better “comprehend” far
more data in very complex environments with hundreds of com
ponents and thousands of different failure sequences and disaster
scenarios.

New models of protection against cyberattacks. The second
front where technology can greatly help with disaster recovery is
on the cyberattack front. Right now, organizations are spending
millions of dollars on various intrusion prevention, intrusion
detection, and asset protection tools. The evolution should be
from protecting individual organizations to protecting the global
network. Instead of fragmented, perorganization defense mea
sures, the global communication network should be “cleaned” of
threats that can create data center disasters. So, for example,
phishing attacks that would compromise a data center’s ac
cess control mechanisms should be filtered out in the network—
or in the cloud—instead of reaching and being filtered at the
end points.

Conclusion
Disaster recovery has come a long way—from naive tape

backup operations to complex site recovery operations and data
reconciliation techniques. The expenses associated with disaster
protection don’t seem to go down over the years; on the contrary,
they are only increasing.

The major challenge of DR readiness is in its return on invest
ment (ROI) model. On one hand, a traditional zerodataloss DR
configuration requires organizations to implement and manage
not only a primary site but also a local standby and remote
standby; doing so essentially triples the costs of critical infra
structure, even though only onethird of it (the primary site) is
utilized in normal operation.

On the other hand, if a disaster occurs and the proper mea
sures are not in place, the financial losses, reputation damage,
regulatory backlash, and other risks can be devastating. As orga
nizations move into the future, they will need to address the in
creasing volumes and criticality of data. The right disaster
recovery solution will no longer be an option; it will be essential
for mitigating risk, and ultimately, for staying in business. s

“On one hand, a traditional zero-data-loss DR configuration requires
organizations to implement and manage not only a primary site
but also a local standby and remote standby; doing so essentially

triples the costs of critical infrastructure, even though only one-third
of it (the primary site) is utilized in normal operation.”

“On the other hand, if a disaster occurs and the proper measures are
not in place, the financial losses, reputation damage, regulatory backlash,
and other risks can be devastating. As organizations move into the future,

they will need to address the increasing volumes and criticality of data.
The right disaster recovery solution will no longer be an option; it will be

essential for mitigating risk, and ultimately, for staying in business.”

10 February 2019

B R I A N ’ S
N O T E S

Infrastructure as Code—
Managing Servers

in the Cloud
Book notes by Brian Hitchcock

Brian Hitchcock

Details
Author: Kief Morris
ISBN-13: 9781491924358
Publication Date: June 2016
Publisher: O’Reilly Media

Summary
This book introduced me to a lot of new ideas. I had heard of

infrastructure as code, but I had no idea what the term really
meant. There is a lot of good detail here that helps explain the
impacts you will experience as you move to this new way of
building and supporting IT systems.

Preface
Teams are using automated tools to build software and the

infrastructure it runs on. The tools are described as “infrastruc
ture as code” and operate on files that define servers and net
working resources as well as other elements. These tools are used
to process the files to build and maintain systems. The DevOps
movement—a collaboration between software developers and
software operations—manages infrastructure using a software
development paradigm.

Many teams struggle to make the transition from classic in
frastructure management, which I call “normal,” to this new
paradigm. The author explains his journey to the cloud in a sec
tion titled, “How I Learned to Stop Worrying and to Love the
Cloud,” a reference, I assume, to Dr. Strangelove. Starting with
hosted systems, virtualization brought infrastructure as code
into focus. The journey continued from rack servers supporting
many services to VMware. With virtual servers, you could
cleanly split each service onto its own VM. Old problems went
away only to be replaced by new ones, which required a new way
of thinking. Servers were so much easier to create; many more
servers were created than anyone thought possible. The ability to
build a new server in less than a day led to over 100 VMs running
and an endless need for more storage to support them. The au
thor compares this to Disney’s “The Sorcerer’s Apprentice” from
Fantasia. In the animated classic, Mickey Mouse thinks he knows
how to work the magic but quickly finds himself unable to con
trol his environment. The author states that the number of VMs
overwhelmed them. As things broke and were fixed, no record of
the changes was made. It was tough to install software updates
across all systems, because there are so many differences among

them, with numerous combinations of versions and components.
Tools that were new at the time, Puppet and Chef, didn’t help
clean up the existing mess. The existing systems were too differ
ent, causing any automated configuration attempt to fail. Using
these new tools worked only for new servers.

As so often happens, it wasn’t the cloud that fixed the prob
lem—it was the move to the cloud, requiring the rebuilding of all
existing systems, that allowed automated configuration to suc
ceed. Starting fresh with controlled configurations for all servers
also meant that any server could be rebuilt from scratch auto
matically. Learning the new ways was painful. Highly automated
infrastructure presented many challenges.

The author then addresses why he wrote this book. Many
teams are using cloud, virtualization, and automation tools, but
they don’t have the time to make it all work. The endless daily
crises take all of their time. This book provides a practical vision
for managing IT infrastructure. This book is for the usual IT
suspects and software developers that need to manage their own
infrastructure. The reader is assumed to have some experience
with virtualization or Infrastructure as a Service (IaaS), and au
tomation software such as Puppet, Chevy, and Ansible.

Chapter 1—Challenges and Principles
New technologies promise to transform IT infrastructure

man agement, but many teams aren’t seeing the benefits—for too
many, they just see more of the same mess. So why infrastructure
as code? All this cool new stuff should save time and effort, re
ducing the time spent on routine drudgery. On a personal note,
my job is 100% routine drudgery, so I’m eager to learn about this
new world. IT operations can’t keep up with the daily demands
and can’t fix existing problems to keep everything from collaps
ing. Cloud and automation tools should make it much easier to
make changes, but you have to set up the needed process to get
the advertised benefits. Trying to apply the precloud, preauto
mation principles—where you planned a change and it took days
to weeks to implement—won’t work when an automated ap
proach can make changes in minutes or less. The author points
out that existing (i.e., legacy) change management is often ig
nored to get things done quickly. This legacy approach doesn’t
cope well with the speed of change possible with cloud and new
tools. Infrastructure as code enters the picture to help.

We are told that in the “Iron Age” of IT, systems were tied
directly to physical hardware. Lots of manual work was required
to provision and maintain these systems. I’m quite fond of the

11The NoCOUG Journal

Iron Age, with all the breast plates and goofy helmets—and I
especially like the horses. Making changes to such systems takes
lots of planning and nothing gets done quickly.

So, what exactly is infrastructure as code? We are told that it is
an approach to infrastructure automation—based on practices
from software development—that supports a consistent process
for provisioning and changing systems. Changes are made to
system definitions, and the process of applying changes is auto
mated. The central idea is that this approach treats infrastructure
as if it were software and data. Now you can see how a version
con trol system (VCS) could impose order on all configurations
and changes. We are told that the most demanding environments,
such as Amazon, Netflix, and Google, have proven that this ap
proach works. This book’s goal is to explain how to make all this
happen and to warn us about the things that can go wrong.

Note that infrastructure as code is not just for the cloud.
While it works really well in the cloud, it can be used to great
benefit in worlds that are not in a cloud.

There are challenges, of course, with dynamic infrastructure
that is created and controlled through software: server sprawl as
too many servers get created, configuration drift as things get
changed, and snowflake servers that are so fragile no one will
touch them. A good war story is offered, explaining how different
Perl versions among servers was the root cause of a major outage.

We then hear about fragile infrastructure—or, as the author
describes it: don’t touch that server, don’t point at it, don’t even
look at it. Such servers are critical, but no one supporting them
knows how they were built or what the impact of any change will
be.

One of the principles of infrastructure as code is “cattle not
pets,” which means that servers, and other resources, are not
sensitive beings to be nurtured but resources to be created,
changed, and replaced all the time. The term “antifragility” is
introduced, meaning “beyond robust.” I think “robust” works
well enough by itself.

I have some observations. Even if all this automation will
work, how many IT persons live for the drama? Similarly, if your
organization doesn’t move away from routine, repetitive tasks,
do they really value your time? One of the stated goals is to have
users set up what they need through selfservice interfaces.
Users, in my opinion, can’t be left to manage resources. Each one
of them would take all available resources to process their per
sonal email. Since you can, in theory, rebuild any server at any
time, we are told that recovery from an outage will be quick. The
assumption that you can recover quickly can be as bad as assum
ing failure can be prevented. The Titanic was not unsinkable.
Continuous improvement also means continuous new issues. I
agree that the transition to infrastructure as code will be difficult.
I have no idea how to rebuild any of the systems I support.

I also wonder if everything about a complex system can be put
in a text file. The discussion assumes this but does not address it.
If one system is the data source for another system controlled by
another group, how is this configuration handled? If the other
group makes changes, do we record the new configuration or do
they? Would all groups be forced into one singleversion control
system? We are told that it is difficult to write automated tests for
existing legacy systems, but every existing system is a legacy
system. Only if you are starting from scratch can you hope to
build systems in this new way. And any time your organization
acquires another company or different parts of your company are

reorganized, you will have many new and different systems that
will need to be integrated into your automated infrastructure
process.

Chapter 2—Dynamic Infrastructure Platforms
This chapter describes different types of platforms that sup

port provisioning and managing infrastructure resources. A dy
namic infrastructure platform is a system that provides servers,
storage, and networking resources in a way that can be allocated
and managed programmatically. The usual list of platform types
and who provides them is shown. A dynamic infrastructure plat
form is required to be programmable, ondemand, and selfser
vice. Each of these requirements is discussed in detail. The
sidebar showing how the NIST defines a cloud is worth reading.
The key infrastructure resources provided by the platform are
compute, storage, and networking. The types of dynamic infra
structure platforms available are growing and changing as more
startup ventures and established vendors join the market. Each
type is discussed. The “antipattern” discussion was especially
useful. You can use virtualization tools but not let users access
them dynamically and not allow a selfservice model—but that
isn’t infrastructure as code. Using different cloud types is re
viewed. When deciding on such a platform you will have to
choose between public or private. Security is the number one
concern when moving to a public cloud. Other customers with
whom you will be sharing resources may be your competitors,
and some may be criminals. Left unsaid is whether or not your
competitors are criminals, but we must move on.

Cloud portability needs to be considered to avoid lockin. The
only way to prevent this is to build your infrastructure on mul
tiple vendors; this sounds good, but there are always tradeoffs: it
will reduce the cost benefits of moving to the cloud.

I never thought I’d see Formula One racing come up in a book
like this, but here it is in the “Mechanical Sympathy with the
Cloud and Virtualization” section! For an IT person, the more
you know how the system works, the more you can get the best
from it, just like a racing driver. There are several great points
here. Among them, you don’t have to know what is happening
underneath all the abstraction . . . until you do! A quote worth
remembering is “hardware still lurks beneath the abstraction.”
The story of what Netflix had to do to get AWS instances that
met their needs in the real world is just wonderful. You cannot
make this stuff up! We are told that in many cases, there may be
a limited number of services that will never be suitable for mov
ing to a public cloud. I’d like to hear more about this. Specific
examples would have been useful.

Chapter 3—Infrastructure Definition Tools
These are the tools that you will use to manage the compute,

storage, and networking resources. They use the platforms de
scribed earlier to implement the specified resources. These tools
are layered on top of the platform to gain the full benefit of infra
structure as code. How to select and use these tools is covered as
well as examples of how to define the resources. When choosing
tools for infrastructure as code, we are warned that many tools
on the market don’t really work well for infrastructure as code,
even though their marketing claims otherwise. The first require
ment that these tools must meet is to provide a scriptable inter
face. Specifically, the tool must not rely on a GUI interface. This
surprised me, since so much of what I see advertised promotes

12 February 2019

draganddrop operations. The authors tell us that to support true
selfservice, tools must make it “possible for technical people to
get under the hood,” and this requires commandline tools, pro
grammable APIs, and opensource code. Other requirements
that are discussed include unattended mode for commandline
tools, support for unattended execution, and externalized con
figuration.

I recommend the section describing how ad hoc scripts lead
to the automation fear spiral. There are sections that cover using
a standard VCS tool, configuring definition files, and working
with infrastructure definition tools and configuration registries.
I liked the sections on the basics of using a VCS, the definition of
“provisioning,” and the pitfalls of tight coupling with a configura
tion registry. Several examples of scripts and configuration files
are discussed. I’d like to hear more about specific examples: we
are told we can create servers, but what does that really mean? I
can see creating web servers, but how about a complicated sys
tem with a database server, web servers, middleware servers, DR
servers, and more? Can you orchestrate creating and modifying
all of the pieces of such a system? I’d like to see some discussions
of what infrastructure as code can’t do—what level of complexity
can’t be automated.

Chapter 4—Server Configuration Tools
Virtualization and moving to the cloud have made configura

tion tools like Puppet and Chef more popular. They support
creating and updating large numbers of new servers. Docker is a
containerization tool that is more recent and is used to package,
distribute, and run applications. The container has the applica
tion and pieces of the operating system.

One of the goals of automated server management is that new
servers can be provisioned on demand in a few minutes, without
human involvement. When a change is made it is applied to all
servers, again without human intervention. The process is repeat
able, consistent, and selfdocumented. Changes are safe and easy
to make, and automated tests are run each time a change is made.
Controlled testing and staged release strategies are supported.

The discussion of tools for different server management func
tions covers tools for creating and configuring servers, tools for
packaging server templates and running commands on servers,
and using configuration from a central registry. The section cov
ering security tradeoffs that come along with all this automation
is very good. There are lots of opportunities for evildoers. We also
learn how general scripting languages can be used effectively with
automation. There are several server change management mod
els: ad hoc change management, configuration synchronization,
im mut able infrastructure, and containerized services. Containeri
za tion products such as Docker and Windows Containers are an
alternative way to install and run applications on servers.

When choosing tools that connect to managed servers, what
about security? What prevents me from making a destructive
change to a configuration file knowing it will be propagated to all
managed servers?

The next section addresses this issue. It sounds like we are
creating a whole new set of security issues, as if we didn’t have
enough already.

Chapter 5—General Infrastructure Services
Previous chapters discussed tools to provision and configure

the core compute, networking, and storage resources needed to

build infrastructure as code. You will need a range of other ser
vices and tools as well. Examples include DNS and monitoring,
message queues, and databases. Really? All this technowizardry
and we still need databases? I assumed databases had been virtu
alized and abstracted out of existence!

There are considerations for infrastructure services and tools.
All services and tools must support these features: services can
be easily rebuilt, the managed elements of the infrastructure are
disposable, those same elements are always changing, routine re
quests are selfservice or happen automatically, and changes are
safe and easy. To support all of this, we need externalized defini
tion files, selfdocumenting systems and processes, a version for
everything, continuous testing, small changes made instead of
batches of changes, and continuously available servers. This is a
long list of requirements, and many products that claim to sup
port infrastructure as code have been around too long to have
been built to meet all of them.

Referring to software products that have been around a while
as legacy, we have a list of the ways they can fail to support infra
structure as code: they don’t automatically handle adding and
removing infrastructure elements, they assume installation on
static servers, they require manual configuration usually via a UI,
they can’t replicate configuration easily, and it is difficult to test
configuration changes. When you are considering services and
tools, you need to check for tools that work with externalized
configuration, that assume infrastructure is dynamic, and that
offer cloudcompatible licensing and loose coupling. Other sec
tions cover “Sharing a Service Between Teams”; “Monitoring:
Alerting, Metrics, and Logging”; “Service Discovery”; “Dis trib u
ted Process Management”; and “Software Deployment.”

Chapter 6—Patterns for Provisioning Servers
So far, we have been learning about the tooling needed for

creating, configuring, and changing infrastructure elements.
Most of the time is spent on servers, and Part II looks at provi
sioning and making changes to servers.

Server provisioning typically involves procuring hardware,
creating the instance, setting up disks, installing the OS and
other software, and configuring networking. Existing servers
may be reprovisioned when major changes are needed. The
lifecycle of a server is discussed. A server template image can be
created that is made from a snapshot of an existing server that
has already been configured. The specific issues for creating a
new server, updating an existing server, and replacing a server
are examined. The immutable server pattern doesn’t make con
figuration updates to the server; instead, any changes are made
to the template and the server is rebuilt entirely. If you are a fan
of this pattern, you don’t allow any change to be made to an exist
ing production server. If the infrastructure is “code,” you don’t
change production software on the server, you develop a new
release of the software.

There are patterns for creating servers. You can do this by
cloning an existing server, using a snapshot saved from a running
server, building from a server template, or booting from an OS
installation image. In this section we also see the antipattern
discussed—in this case, the handcrafted server. This is the most
expedient way to get a new server set up, but it doesn’t scale.
Other antipatterns are the hotcloned server and the snowflake
factory, where automated tools are run manually each time a
server is created. The result is that each server is unique and no

13The NoCOUG Journal

one knows how each one was set up. After creating a new server,
changes may be needed before it is ready for use. It may need
patches or seed data. In theory, you could put all of this in the
server template, but then the templates get more complex and
require better management. Several strategies for dealing with
this are explained.

Chapter 7—Patterns for Managing Server Templates
At this point, we have templates used by our automation tools

to build servers. How do we manage all these templates? Tem
plates need to be kept up to date, and the process to do so needs
to be repeatable and able to scale. You can outsource this task:
there are vendors that will provide prepackaged templates, often
times supplied by the hosting provider. This can be very good in
the early days of a new infrastructure, but you will want more
control as time goes by.

Next, we see how to provision servers using templates. This
section addresses the question of which elements of the server
configuration should be in the template and which will be added
after the server is created. This is a spectrum, and the discussion
ranges from provisioning at creation time to provisioning in the
template. Immutable servers come up again.

The process for building a server template has steps: selecting
the origin image, applying customizations, and packaging the
template image. Each of these steps is covered and the term “bak
ing” a server is explained, wherein the newly created server is
saved in a format that can be used later to build new servers.

Origin images covers the first step in the process of creating
the template. An image of a running server, the origin image, can
be generated several ways. We are told not to do this by hot clon
ing a running server; rather, the origin image must be created
from a clean server that has not been used for anything else.

Next is updating server templates. Since we can bake a tem
plate, when we update a template, one approach is called “reheat
ing the template.” I’m starting to think I’ve wandered into the
“Great British Baking Show.” I wonder what Mr. Hollywood
would do for a new server? We also learn that over time, tem
plates build up “cruft,” which is a technical term I have not seen
before, and is not a good thing.

Different servers have different roles in your infrastructure,
and you will need to build templates for each role: for example,
servers that need different operating systems or software distri
butions. You may also need different templates for servers tuned
for databases versus web servers. It is possible to automate server
template management. Tools are available to do all this for you,
spin up the server, apply changes, and bake the template to make
it ready for use.

Chapter 8—Patterns for Updating and Changing Servers
Keeping all this dynamic infrastructure up to date is more

difficult. If not done correctly, you get a “sprawling estate of in
consistent servers.” You won’t be surprised that I work in just
such an estate. It gets worse in that the more sprawl you have, the
harder it is to automate management. Over time, this spirals out
of consistency, and you lose any infrastructure as code you might
have had to begin with. In theory, all you have to do is not allow
any changes to a server outside the automated process. That way
you always have the latest template file that was used to imple
ment the change. There are models for server change manage
ment. The traditional approach is ad hoc change management.

Someone decides a change is needed, and someone is tasked with
editing a file or running a oneoff script to make the change.
Who can guess what my world is like? Of course, the author tells
us that this approach is the very opposite of infrastructure as
code. Other models are discussed, including continuous config
uration synchronization, where the configuration tool is execut
ing automatically, perhaps every hour. Immutable servers come
up again, no surprise, but now we have a section about situations
where such servers really aren’t immutable. Go figure!

Next, we see general patterns and practices. Many practices
are described. We start with keeping the templates as small as
possible, followed by replacing servers when the server template
changes. This section fascinates me as we are told to replace run
ning servers whenever the template is updated. I can see this
working for a bunch of web servers, updated in sequence, but I’m
not clear how this applies to database servers, for example.
Another pattern is Phoenix servers, where you rebuild servers
automatically, even though no template changes have been made.
This is done to catch any ad hoc changes that may have crept in.

Following this we have sections discussing patterns and prac
tices for continuous deployment, for immutable servers, and for
managing configuration definitions

I have questions about continuous synchronization. Suppose
someone changes the server configuration, $100 million exits the
bank, and configuration goes back to normal. Do we become
complacent that configuration is automagically maintained? Is
there no need to review all changes that are made?

Chapter 9—Patterns for Defining Infrastructure
As you generate more and more servers, new issues come up

for infrastructure as code. Size, complexity, and number of users
all conspire to make it more difficult. As more servers are af
fected, any change has more potential to cause problems—so you
are tempted to make changes less often. You spend more time on
being careful with changes. You are less likely to allow users to
provision their own resources because they might break more
things. This often leads to centralized control, which really
means more meetings. The challenge is to set up your infrastruc
ture so that the impact of any given change is minimized.

For environments, we again see that the antipattern is the
handcrafted infrastructure, which, again, is all I have ever seen.
Specific examples are given as well as all the reasons this is a bad
way to go. You do not want to have any snowflake environments
that are unique and special, and to which you can’t make chang
es. One of the recommended ways to handle this is reusable
definition files. Code examples are shown for this.

Other sections cover organizing infrastructure and running
definition tools. I like the section on the pitfalls of sharing infra
structure elements. Do you know who else is sharing the disks
that your missioncritical application runs on? Do you trust your
hosting service? Do they know what the technicians are actually
doing with those resources?

We are told not to share a database to keep applications sepa
rate, so one database change won’t affect multiple applications.
Sounds great, unless you’re paying Oracle license fees. But then,
perhaps we are being told to move away from Oracle? We are
advised to rebuild the existing infrastructure, one piece at a
time. Who has time for this? My customers don’t want any
downtime as it is. Overall, this is a huge shift in mindset for the
organization.

14 February 2019

Chapter 10—Software Engineering Practices for
Infrastructure

The central theme of this book has been that systems and re
sources used to run software are viewed as software. You can use
software tools and practices from the software development
world to manage these systems. The reason to do all this is to
build quality into these systems. The argument is that building
infrastructure—i.e., servers, storage, and networking—needs to
be handled the same way as software development. Infrastructure
developers need to operate the same way as software developers,
following these principles: deliver working code (infrastructure)
early, continually deliver small and useful increments, build only
what is needed at the moment, build as simply as possible, make
sure each change is well built, get feedback for every change, and
assume that requirements will change and everything you deliver
will need to be modified as users employ the code/infrastructure.

The section covering system quality makes a major assertion
about highquality software: while usually viewed as functional
correctness, it really is an enabler of change. The test of quality
infrastructure is how quickly and safely changes are made to it.
Note the wording are made to it, not can be made. A highqual
ity infrastructure means that it is being changed continuously. In
the “VCS for Infrastructure Management” section, there is a
good discussion of what to manage in VCS for infrastructure. A
topic that was new to me, continuous integration (CI), is the
practice of frequently integrating and testing all changes to a
system as the changes are being developed. You can have separate
branches in your VCS to allow a large change to be implemented
before integrating and testing with other changes in other
branches. There is a detailed discussion of why this isn’t CI and
why you don’t want to do it. Other sections cover continuous
delivery (CD), code quality, and managing major infrastructure
changes.

Chapter 11—Testing Infrastructure Changes
The previous chapter focused on quality; here we look at test

ing, specifically automated testing. We are told that testing is es
sential to be able to continually monitor changes made to a
system, but maintaining such an automated test suite is not easy.
Note that automation doesn’t mean testing goes faster or that test
ing is too slow to include in said automation. As always, trying to
save time by not testing only results in spending more time later
looking for bugs. When done well, automated testing results in
fewer errors in production, faster resolution for the errors that are
found, and the ability to support frequent changes to the system.

The agile approach to testing means that testing is integrated
with implementation. Changes are made and testing is done, and
both happen continuously. If the automated testing is going to be
successful, the entire team must be involved, not just a few people.

The Test Pyramid shows how different types of testing fit to
gether, from lowlevel tests run more often to mediumlevel tests
to highlevel tests run less frequently. The complexity of the test
ing increases as you move up the pyramid, and you don’t spend
the time running the medium and highlevel tests until the low
level tests have been passed.

There are tools available to help you set up automated testing.
Issues to consider include how to securely connect to a server to
run tests and how monitoring is a form of testing.

The section covering managing test code has a very good
discussion of wasted time. For instance, an error may be caused

by your cloud vendor’s API and not your code. Wait—the cloud
doesn’t cure all of our problems?

In the section on roles and workflow for testing, we learn of
the three amigos conversation, wherein three people are involved
before any work is done: the person doing the work, the person
requesting the work, and the person who will test the result.
Worth a read.

Chapter 12—Change Management Pipelines for
Infrastructure

Continuous delivery means that all the parts of a system work
after a change has been made, and we now look at how to set up
a pipeline to deliver such changes. The pipeline provides imme
diate and complete testing after each change, testing system ele
ments progressively (the test pyramid), supporting manual
validation steps (user acceptance test), and applying changes into
production quickly with low risk. Having delineated how it
works, the benefits of said pipeline are explained: the infrastruc
ture components are always production ready, because any
change has gone through the pipeline before getting to produc
tion. This makes changes easier and less painful. This also sup
ports any governance requirements.

Coverage of guidelines for designing pipelines talks about the
need to have consistency across stages of the pipeline. In a per
fect world, all environments would be identical, but the world
isn’t perfect. When it’s too expensive to replicate all aspects of the
production environment in the test environment, you need to get
productionlike sooner rather than later. “Sooner” in this context
means as far down the test pyramid as possible. How easy it is to
mess all this up is shown in the section titled “Devoops.” A sim
ple error in one file caused all the servers in the infrastructure to
become inaccessible. Automation is great, but it also means er
rors are automatically distributed throughout the infrastructure.
Note that there was no automation to correct this error, someone
had to manually access each server and correct the file, one
server at a time.

Other sections cover basic pipeline designs practices for using
a pipeline and scaling pipelines to more complex systems. I had
never heard of Conway’s Law, which, the author tells us, states
that any group that builds a system will, in the end, design the
system to reflect the group’s communication structure. I found
this interesting and reminiscent of the idea that dog owners
begin to resemble their dogs. This chapter ends with a discussion
of techniques for handling dependencies between components
and practices for managing interfaces between components.

Chapter 13—Workflow for the Infrastructure Team
All of this talk of automation is a radically different way to

work than what I have experienced in my many years of IT. After
working directly on servers, we are told we must move to work
ing on servers indirectly. This chapter looks at how to get IT
operations teams to move from the old ways to the new.

The first topic tells you all you need to know. We are told to
automate anything that moves. More specifically, we are told to
automate tasks whenever possible. We are told that laziness is the
first of three great virtues of a programmer, who will go to great
effort to reduce overall work, i.e., the time taken to automate
tasks will reduce the time needed, overall, for those tasks. But we
aren’t told the other two great virtues! Do programmers have
virtue? Is that a plugin? Further, we should review all tasks to see

15The NoCOUG Journal

if they are even necessary. That’s radical! My job is almost en
tirely timewasting paperwork and time keeping. Also, create
documentation so that users can execute tasks on their own.
Again, that is pretty out there; most of what we do is prevent
users from having any access to anything that can be broken.

In a section titled “Using a Local Sandbox,” the need for test
systems is explained, and these need to represent the real infra
structure. I have never worked anywhere where the money was
spent to make test look like production. In my world, each cus
tomer system is different. Imagine the cost to reproduce all these
different systems for test.

Next, we learn about codebase organization patterns: how to
organize all the definitions, scripts, and configuration files.
Turns out that the members of the team who take care of routine
tasks that don’t add value have the monkey role. There are build
monkeys and merge monkeys. If the task doesn’t add value, why
is it being done? I know: there isn’t any point in asking.

Assuming you have a workflow, you should think about as
sessing your workflow’s effectiveness. In this section there is a
discussion of the best process for handling emergency fixes. The
traditional answer is to connect to servers directly and be a
hero—saving the day and creating oneoff, unique, fragile snow
flake configurations. The modern approach is to use the normal
process for emergencies. Any change, emergency or not, goes
through the normal automated process. I wonder how many
shops actually follow this advice.

Chapter 14—Continuity with Dynamic Infrastructure
This chapter covers continuity, which the author uses to cover

operational quality. This means services are always available.
Traditionally, to provide the level of operational quality where
services don’t go down, you limit change. You only allow changes
to be made through a very long, careful process, and you don’t
make changes very often. All of this makes sense, but it’s in con
flict with dynamic infrastructure, where systems are constantly
being changed. To deal with this, we need to change the goal.
Instead of limiting change because it might break the system, we
need to make the system more reliable even as changes are con
tinuously made. The discussion covers service continuity, data
continuity, disaster recovery, and security.

In the section on service continuity we learn about the hidden
impact of outofhours maintenance, where longrunning batch
jobs grow to overtake the SLA targets. Also interesting is the
description of 12factor applications, which are the guidelines to
be followed to make an application work well in the context of
dynamic infrastructure. Another example of the change in
thinking required by infrastructure as code is that you really are
building on unreliable infrastructure. At the scale of the cloud,
hardware will most assuredly fail, no matter how many “nines” of
reliability you have on any one component. You can pay more for
even more reliable hardware, but at some point it doesn’t make
sense. You need to stop the reliability arms race and lean into a
simple truth, you will need to replace hardware when it fails, and
you might as well save some money. Reasonably reliable hard
ware for resilient systems and software makes the most sense.

Other topics in this chapter that I found interesting include
zerodowntime changes, dark launching, and zerodowntime
changes with data, disaster recovery, prevention versus recovery,
and Netflix and the Simian Army.

Security had to come up somewhere and here it is. The auto
mation may create new ways for attackers to gain access to your
systems. One example is that frequently rebuilding your servers
may lead you to assume that attackers can’t make changes and
gain access. But this also means that you may not notice changes
made by an attacker after each rebuild, and you may not notice
attackers gaining access over and over in the interval between
automated rebuilds. In fact, the automatic rebuilds automatically
cover the tracks left by the attackers.

Chapter 15—Organizing for Infrastructure as Code
This final chapter looks at how to make all this happen in your

organization. Your group will have to move from the old ways of
working, such as manually configuring servers, to a new era of
automated, dynamic infrastructure. Also, note that you need to
avoid just bolting automation on top of the old manual processes.

The section on evolutionary architecture describes the road to
the cloud, and we are told that this road to the new world has
many obstacles. You will be challenged to find the time to make
this change while dealing with commercial pressures to keep
existing services running.

You will need to know what your team is trying to accom
plish. The measuring effectiveness section tells us how to use
Kanban to make work visible and encourages us to set up blame
less postmortems. Once I was in a postmortem, and I stood up
and stated that the mistakes were my fault. Management openly
expressed disappointment with me, not for my mistakes but for
admitting them. They said they enjoyed the “hunt for the guilty,”
and my honesty had taken this simple, jobrelated joy from
them. Lesson learned: lie to protect what little joy your manager
gets from their job!

The chapter ends with a conclusion: with regard to infrastruc
ture as code, it’s never finished. I’m not surprised by this, and I’d
add that the resistance to change won’t suddenly go away either.
There will always be some good reason to go back to manual
changes on servers.

Conclusion
If you are wondering about infrastructure as code or how

your job in the IT world will change over the next few years, this
book is worth your time. Since it was published in 2015, I’m sure
many of the details have changed. Just this week I was in a meet
ing for planning the next required round of infrastructure up
grades. Customers will be required to schedule 12 hours of
downtime for each of their systems. You won’t be surprised to
learn that the hardest part of this upgrade project is getting each
customer to schedule this downtime. I guess infrastructure as
code just isn’t going to work for me. s

Brian Hitchcock works for Oracle Corporation where he has been
supporting Fusion Middleware since 2013. Before that, he sup-
ported Fusion Applications and the Federal OnDemand group. He
was with Sun Microsystems for 15 years (before it was acquired by
Oracle Corporation) where he supported Oracle databases and
Oracle Applications. His contact information and all his book re-
views and presentations are available at www.brianhitchcock.
net/oracle-dbafmw/. The statements and opinions expressed here
are the author’s and do not necessarily represent those of Oracle
Corporation.

Copyright © 2019, Brian Hitchcock

http://www.brianhitchcock.net/oracle-dbafmw/
http://www.brianhitchcock.net/oracle-dbafmw/

16 February 2019

S P E C I A L
F E AT U R E

The foundation of relational databases began with an
experimental system. The core of that system was the
basis of the System R research. Today this research
re mains the key functionality of modern database

technology. The need for concurrency control and scalability
built and maintained by the power of the SQL language exists
among the most popular databases of choice, such as MySQL,
Oracle, SQL Server, and the popular attentionseeker PostgreSQL.
It’s not often that you combine opensource and closed propri
etary source databases in the same sentence, especially when
you think about the giant or the champion in the database realm
known as Oracle. But the contender, PostgreSQL, has a lot of
similarities to the champion. In both cases they are ACID com
pliant with full transactional logging capabilities. When you add
the EnterpriseDB Advanced Server database, the gap between
the champion and the contender starts to close even more. Ex
ploring the quadrants, Gartner appears to recognize that this
gap may be closing in the relational database arena.

Comparing the two technologies, we look at Oracle Enterprise
Edition, including tools, and the EnterpriseDB Advanced Server,
including tools. The comparison allows an Oracle DBA to make
an easier transition to the PostgreSQL environment. At first
glance you can immediately notice some overall similarities,
especially when it comes to SQL capabilities and application
development. It’s intriguing to think of being able to execute
familiar SQL or PL/SQL syntax directly in a PostgreSQL data
base.

Understanding the terminology can often be confusing if you
have been accustomed to Oracle for a number of years.

The perfect database may not really exist, both databases have
some unique options that will cause a DBA to have nightmares:

➤ Unlimited database size
➤ Unlimited rows per table
➤ Unlimited indexes per table
Unlimited nightmares are true options, showing the flexibility

and control you can have within the database versus the restric

tions within Oracle. The restrictions are for a good cause, so the
unlimited options are possible with PostgreSQL but definitely
not advised.

Capacity is almost equal between the technologies when you
consider options for creating a stable database that you can
maintain. The variation of the columns has a range for PostgreSQL
due to the different data types being used.

Tables and partitions are quite similar, and both are feature
rich. There have been some great improvements in recent re
leases of PostgreSQL with the addition of declarative partitioning
and features allowing partitions to be created on multiple col
umns. Temporary tables are always useful, but the concept of
global temporary tables does not exist in PostgreSQL.

Data types can be the heart and soul of your database. The
flexibility within a data model is key to supporting an applica
tion. It’s known that an Oracle database can lend its flexibility to
support everything from OLTP to data warehouses. This is also
true for PostgreSQL, which also offers an extra layer of flexibility,
allowing you to combine the likes of a NoSQL database with the
flair of a relational database. The addition of the JSON and
JSONB data types makes this possible.

Spatial data in conjunction with blob capabilities can be a
necessity in the world of storing maps and navigational system–
related databases. PostGIS is an easily configurable extension
built to handle spatial data.

Comparing Oracle
with PostgreSQL

By Timothy Steward

 What Oracle PostgreSQL

 Table or index Table or index Relation

 Row Row Tuple

 Column Column Attribute

 Data block Data block Page (on disk)

 Page Page Buffer (in memory)

 Maximum Oracle PostgreSQL
 Table size 4GB x db block 32 TB
 size (default 32 TB)

 Row size 4 TB 1.6 TB
 Field size 4 GB-1x db block 1 GB
 size

 Columns per table 1000 250-1600

 Entities Oracle PostgreSQL

 Temporary tables, Same
(materialized) views,
constraints

 Partitioning: range, hash, Similar
list, sub-partitioning, IOT

 Interval partitioning, Yes No
partitioned indexes

17The NoCOUG Journal

S P E C I A L
F E AT U R E

There is a common misconception that PostgreSQL can’t han
dle blobs or clob data. The underlying community PostgreSQL
has the data type of bytea, which indeed handles binary data.
Advanced Server adds the additional blob/clob data types, which
will allow data to exist in the same format as Oracle.

Indexing options are quite similar between the two technolo
gies for standard database options. When thinking of a relational
database, you do not typically think about the ability to store
documents or complete fulltext searches. This could be one ad
vantage where PostgreSQL offers the options of GIST and GIN,
allowing you to speed up fulltext searches built with the same
technology of inverted indices as Elasticsearch. GIN can also be
smaller than a Btree index after creation, offering GIN as a pos
sible substitute for Btree indexes.

 MAX Oracle PostgreSQL

 Integer Number DEC, NUMERIC,
 SMALLINT, INT,
 BINARY_INTEGER,
 PLS_INTEGER,
 INTEGER, BIGINT

 Floating point BINARY_FLOAT, FLOAT, REAL,
 BINARY_DOUBLE DOUBLE_PRECISION

 Decimal Number DEC, DECIMAL,
 NUMERIC

 String CHAR, VARCHAR2, CHARACTER, TEXT,
 CLOB, NCLOB, CHAR VARYING,
 NVARCHAR2, CHARACTER VARYING,
 NCHAR VARCHAR, Clob,NClob

 Binary BLOB, RAW, BFILE BYTEA, BFILE, Blob

 Entitles Oracle PostgreSQL

 B-tree, hash, expresssions, Same
partial, full-text, search,
spatial

 Reverse, bitmap, block Similar
range

 Block range = Smart Scan

 K-nearest-neighbor With options Native

 GIST, GIN No Yes

 Speed up full text searches

DDL, which can include DDL and DML. Transactional DDL will
allow everything in your script to roll back if there is a failure.
Rerunning a clean process can often be beneficial.

If we make a guess, we may say that 50% of all SQL scripts
written to support application code will use the SYSDATE or
ROWNUM. Common SQL extensions and DBA favorites such
as the mysterious DUAL table are also present.

Comparing the two technologies often confuses most techies
that have been working in one particular industry. Aside from
the terminology, some overall concepts can be confusing. In the
simplest form, we know that PostgreSQL is considered open and
Oracle is considered closed. Oracle conceptually has an isolated
operating system environment, whereas PostgreSQL will adapt
and integrate into its surroundings.

For example, it has been said that Oracle is a resource hog,
using what’s available—mainly because it functions like an op
erating system. PostgreSQL, on the hand, believes in allowing the
operating system to carry the load and not trying to reinvent the
wheel: “Why do the work when the O/S can do it for me?”

Conceptually there are some users, roles, and schemas with
different meanings but with the same purpose in mind. In Oracle
you have users and roles, where PostgreSQL only has roles. But
with these roles you can actually log into the database.

If confusion settles in, Advanced Server can make things
more relatable. A short navigation through the database brings
things to life with the capabilities to utilize the all_ and user_
views or some of the most common DBA views.

With these common views, the ability to use standard scripts
to tune and monitor the database is available. Some key diction
ary tables, such as pg_stat_statements, pg_stat_activity, and pg_
locks, can produce standard session details.

If scripting isn’t your tool of choice there are GUI options
such as the standard pgAdmin that ships with PostgreSQL, al
lowing good options to monitor a single node. For a more com
plete enterprise solution, EDB offers Postgres Enterprise Manager

 Entities Oracle PostgreSQL

 Union, Intersect, Except, Same
Inner joins, Outer joins,
Merge joins, Common
table expresssions,
Windowing functions,
Parallel query, Query hints,
Alter session, Dynamic SQL

 Transactional DDL Yes Yes

 Entities Oracle PostgreSQL

 DUAL, DECODE, Rownum, Same
Sysdate, Systimestamp,
NVL, NVL2

 DBMS_ALERT DBMS_AQ DBMS_AQADM DBMS_JOB

 DBMS_LOB DBMS_LOCK DBMS_MVIEW DBMS_PIPE

 DBMS_PROFILER DBMS_RANDOM DBMS_RLS DBMS_SCHEDULER

 DBMS_SQL DBMS_UTILITY DBMS_CRYPTO UTL_HTTP

 UTL_MAIL UTL_SMTP UTL_URL UTL_FILE

In the Oracle world we are used to transactions being im
plicit. For example, a new table creation will do a commit inter
nally. The concept of rollback is not available in this scenario.
Within PostgreSQL you have the ability to create transactional

 MAX Oracle PostgreSQL

 Day/time Yes

 Row id Yes

 XML Type Yes

 JSON Is json check Native JSON & JSONB
 constraint with 58 operators,
 functions, relational
 converters
Spatial Yes

18 February 2019

(PEM). For a complete solution, the functionality will bring
things closer in relation to OEM offerings. In most environments
the developers’ favorite is Toad for Oracle. Having used Toad for
many years, there is no fear: with the release of Toad Edge for
Postgres, things are really shaping up.

To share or not to share, that is the question. RAC appears to
have found a place within the infrastructure of every large cor
poration. Sometimes the true purpose of a good technology gets
lost in the hype. The actual comparison is a matter of shared disk
vs. shared nothing.

Understanding your use case is the key. The fundamental
purpose of RAC is to provide a high availability cluster with load
balancing. For PostgreSQL if the use case arises for shared disk,
the Red Hat Cluster Suite can be implemented. To complete the
solution for HA with load balancing, you could make use of the
streaming replication that’s native to PostgreSQL, with Pgpool
for load balancing, and implement EDB Postgres Failover
Manager (EFM) to give you full control over the HA environ
ment.

With a proper HA solution in place, you tend to consider your
disaster recovery needs and a possible means to have your data
geographically disbursed. This can leave you in search of a
proper multimaster replication option. Oracle has Golden Gate,
which can assist you in this area, but with PostgreSQL, the
EnterpriseDB tool replication server will also give you the power
of activeactive replication with change data capture and features
to handle the conflict resolution.

With both databases the deployment options are almost end
less. You truly can run the same Postgres everywhere.

➤ Bare metal (Windows, RHEL, CentOS, Linux on Power,
SLES, Debian)

➤ Virtualized deployments (VMware)

➤ Container deployments (OpenShift, Kubernetes)
➤ Public/private cloud deployments (AWS, Azure, Alibaba,

Google)
An opensource initiative can truly be achieved with a

PostgreSQL solution. The price point can be affordable without
causing procurement nightmares. Independent of virtualization,
a percore subscription model with no vendor lockin can sound
appealing without the fear of a daunting audit lingering in the
shadows.

Sample performance stats show that it’s possible to achieve
high TPS, billions of writes, and scaling of concurrent users with
some flexibility in database size.

Global mobile ad network
➤ Largest database is 14 TB
➤ 1.2 billion transactions a day, 55 K transaction per second
➤ 400 concurrent users
➤ Analyzes 240 TB of data per day

Online brokerage firm
➤ 1 billion writes a day
➤ 3,000 transactions per second
➤ 800 concurrent users

Global stock trade underwriter
➤ Largest database is 8 TB
➤ 6 to 10 million transactions per day
➤ Global consumer financial services provider
➤ Example application database is 2 TB
➤ 200 K SELECT statements per second

PostgreSQL and Oracle can now be mentioned in the same
conversation, as they both share a solid place in the database
ecosystem. The key to a successful migration will be to determine
the proper use case, evaluate the application, and perform a
thorough analysis. EDB has performed a multitude of successful
migrations to date, building a deep knowledge base of the com
parison and challenges. Comparing the technologies may excite
you—or you’ll appreciate the quick installation and setup—but
proper planning will result in successful project. s

© 2019 Timothy Steward

 Entities Oracle PostgreSQL

 Point-in-time recovery Similar
(PITR)

 Backup and recovery RMAN BART

 Standby database Active Data Streaming Rep/EFM
 Guard

 Flashback Yes No

 Entities Oracle PostgreSQL

 Wait events/timed statistics Similar

 Connection pooling: CPU Similar
and I/O resource limits

 Columnar store In-memory Cstore FDW
 option

 In-memory database Yes No

 Multi-master replication Golden Gate XDB Replication Server

“PostgreSQL and Oracle can now be mentioned in the same conversation, as
they both share a solid place in the database ecosystem. The key to a

successful migration will be to determine the proper use case, evaluate the
application, and perform a thorough analysis.”

19The NoCOUG Journal

S P O N S O R
M E S S A G E

Data is the new oil of the digital economy. Effectively
used, data can help organizations to better under
stand customer needs and provide winning strate
gies to meet them. But the data you depend on to

make these important decisions is always in flux. This concept is
particularly applicable to contact details, as customers are liter-
ally a moving target. People change addresses, names, phone
numbers, emails, jobs, and status on purpose all the time, and
seemingly unpredictably. As time elapses, so does the validity
and value of contact details. As customers retire, die, or get mar
ried or divorced, stored data becomes stale and out of date, af
fecting the accuracy and usefulness of data used for communica
tion, analytics, and compliance.

In The Half Life of Facts: Why Everything We Know Has an
Expiration Date, Samuel Arbesman illustrates how the data you
depend on to make important decisions can change with alarm
ing frequency:

 “Facts change all the time. Smoking has gone from doctor
recommended to deadly. We used to think the Earth was the
center of the universe and that Pluto was a planet. For de-
cades, we were convinced that the brontosaurus was a real
dinosaur. In short, what we know about the world is con-
stantly changing.”

It’s worth noting that the brontosaurus is back now, which is
exactly Arbesman’s point about information: it all goes bad even
tually. And while we can’t stop facts from changing, we can rec
ognize that what we know “changes in understandable and
systematic ways.” In science, the term “halflife” is descriptive of
the time it takes for half of a body of entities to decay.

Arbesman postulates that by fusing together science and
mathematics, we can measure how long it will take for knowl
edge in any field to change. If equating contact information with
radioactivity proves sound, knowing the halflife of contact data
would be instrumental in predicting its quality and understand
ing the importance of maintaining it.

A single atom of uranium actually has an unpredictable rate
of decay. It may decay before you finish this article, or it may take
millions of years to break down. That sounds about right with
respect to contact data—it’s unpredictable. However, because
each uranium chuck represents trillions of atoms, we can use the
probability law of large numbers to derive a constant halflife
from a reliable average of 704 million years. Similarly, an element
of datum has a wide variance, but as an aggregate, contact data
has a trackable record of change.

Viewing individual contacts and contact data elements as a
greater entity—like the U.S. Census Bureau database—gives us
the opportunity to apply the probability law of large numbers. By
tracking the annual changes in contact information through sta
tistics from the U.S. Census, we can then establish the actual

halflife of this contact element and determine a conservative
expiration date for contact data. Plugging census data into the
halflife formula reveals that the average halflife of contact data
is 45.4 months, or 3 years and 9 months. The formula and our
conclusions are below:

According to U.S. Census Bureau statistics, we have a popula
tion of 316 million in the U.S.

Marriages = 2.3 million · Divorces = 1.2 million
Births = 4.3 million · Deaths = 2.5 million

Moves = 47 million

Total Changes = 57.3 million per year
Total Changes = 4.8 million per month

If we bring in the halflife formula:

t1/2 = (t ln 1/2)/(ln mf / mi)
t1/2 = ln (1/2)/ln((3164.8)/316) = 45.4 months

Therefore, after 3 years and 9 months, onehalf of the records
in a customer’s database are incorrect.

This simple exercise doesn’t include duplicates, errors, email
addresses, or phone numbers—all variables that directly affect
your ability to nurture leads and maintain contact. According to
Gartner, endangering customer relationships and retention with
bad customer data actually costs U.S. businesses in excess of $600
billion per year. Gartner also cites bad data as a fundamental
driver of failure—holding it responsible for 40% of business ini
tiatives that went nowhere.

Poor data quality can put up to 12% of your revenue in jeop
ardy and stall labor productivity by as much as 20% if left un
treated. Quality data can help position your organization for
growth; at the very least, it addresses these looming problems
that we’ve proven will get worse over time. Awareness of your
data’s halflife should come with this essential take away: utilizing
regularly updated, authoritative reference data is critical to effec
tively mitigating contact decay.

The foremost goal for you and your customers should be to
achieve the highestquality data at the most affordable price. The
110100 rule postulates that it takes $1 to verify the accuracy of
a customer record at point of entry, $10 to clean it in batch form,
and $100 per record if nothing is done at all. This includes the
costs associated with undeliverable shipments, low customer re
tention, and unsuccessful sales and marketing initiatives. The
bottom line? It costs organizations more not to have a “verify and
cleanse” solution in place for validating contact data. With that in
mind, here are a couple of approaches to consider.

One of the best and most costeffective ways to ensure sound
data in your systems is by verifying data as it enters the database.
At some point, most of us have felt uncomfortable about sharing
real details on some domains in cyberspace, and we have en
tered intentionally faulty ones. But whether by accident or in

The Half-Life of Data
By Bud Walker

20 February 2019

tention, erroneous data entering the system brings in the bad
right from the getgo. That is why tools that match records in real
time can perform a number of functions to facilitate verification.

This prevents corrupt data from entering the system and de
lays the cost of cleansing that entry. Just like checking IDs at the
door, web forms can be equipped with autocomplete for near
instant verification of address, telephone, and email entries.

These contact variables can be pinged immediately to ensure
that a number is live and callable, or that an email address is ac
tive and receiving email. Referencing the 110100 rule, spending
$1 per customer is basically database insurance. It’s a cheap ex

penditure to stop garbage, errors, duplicates, or fraudulent at
tempts before they ever become an issue.

However, while this is the best form of frontline defense, it
does not relieve the duty to run regular matching, deduping, and
standardized cleansing routines because it does not alleviate the
problems outlined by changes in census data. Global address,
phone, email, and name verification solutions go a step further,
consolidating or eliminating duplicate records through nameto
address matching and maintaining uptodate records inside
your system.

There are numerous ways to handle this through APIs that fit
into your existing data pipelines, plus CRM plugins or oneoff
batch submissions via the web. Onpremise cleansing with open
source batch programs offer added security for firms concerned
with finance and healthcare regulations, and only recordmatch
ing subscriptions are needed to keep things compliant around
the clock. Profiling your data will offer an added understanding
of where your weaknesses in data collection might lie, and
monitoring your routines with reporting offers easy assessment
of how your data is improving over time.

Once you have your regimen in place, you can build on that
strong foundation of data quality to enrich records for greater
value and utility. Adding demographic and geographic data can
provide for better business intelligence, analytics, and sales and
marketing initiatives. Powerful, flexible, and scalable solutions
can integrate into your existing pipelines and established data
quality regimen to augment what you know about who you do
business with.

While seemingly tangential, ancillary information could offer
that extra bit of insight that may change your course of action,
support a key aspect in identity verification, or offer the icing on
the cake when interfacing with customers. Comprehensive intel
ligence plays a major part in how technology companies at the
forefront of innovation forecast their business goals and find
opportunity.

To gain a single, accurate, and trusted view of critical infor
mation assets, a multifaceted approach to data collection and
filtering is optimal. The verification of facts is much like writing
a history term paper. The more primary and secondary sources
you have to draw from, the firmer your supported conclusions
will be. To this end, independent data brokers who are resource
agnostic may originate more accurate and trusted stores of what
you truly need. For all intents and purposes, the more quality
sources the better.

You will find that what sets data quality competitors apart is
not just the quality of reference data sources at each one’s dis
posal but also the tools they offer to access those sources. To fa
cilitate an effective data quality campaign, you’ll need a partner
who can not only advise you on a sound data quality regimen for
your business needs but also one that is equipped with data qual
ity tools to establish consistent reliability. A commitment to data
quality excellence will position your company for growth—and
may prove to be the hallmark of your success. s

Melissa (www.melissa.com) transforms stale dated, incomplete, cus-
tomer data into accurate, rich, valuable information that drives
en hanced analytics, improves multichannel marketing and enriches
the customer experience. Melissa also specializes in modern tech-
nologies including digital identity verification, demographic en-
richment, and location intelligence. © 2019 Bud Walker

Calculating
the Half-Life of Data

After 3 years and 9 months
half the customer records in a
database are incorrect.

The U.S. population is approximately
316 million, according to the U.S.
Census Bureau.

Changes:

Moves = 47 million

Deaths = 2.5 million

Births = 4.3 million

Divorces = 1.2 million

Marriages = 2.3 million

t1/2 = (t ln 1/2)/(ln mf / mi)

t1/2 = (t ln (1/2)/(ln (316-4.8)/316)) =
45.4 months or …

The half-life formula is:

Total Changes per year =
Total Changes per month =

57.3
4.8

http://www.melissa.com

21The NoCOUG Journal

How Romeo Won the Heart of Juliet
Fourth International NoCOUG SQL Challenge

Once upon a time, Romeo, the son of Montague, told his cousin Benvolio that he was in love with Rosaline but she was not

returning his affections. Benvolio sang a song by the great American songwriter Stephen Foster:

“There are plenty of fish in the sea

As good as ever were caught.”

Meanwhile, Count Paris, a relative of Prince Escalus, asked for the hand of Juliet, daughter of Capulet, in marriage. Capulet or-

ganized a grand feast and invited Count Paris. Juliet agreed to talk to Count Paris at the feast. Benvolio suggested that Romeo

gatecrash the feast so that Romeo could meet other women. Romeo agreed, but only because Rosaline would also be at the feast.

At the feast, Romeo instantly fell in love with Juliet and completely forgot about Rosaline. Romeo then sang another song by mae-

stro Stephen Foster.

“I dream of Juliet with the light brown hair,

Borne, like a vapor, on the summer air;

I see her tripping where the bright streams play,

Happy as the daisies that dance on her way.”

Count Paris and Romeo both wanted to know when Juliet’s birthday was, so that they could send her an edible arrangement.

Juliet connected to an Oracle In-Memory pluggable RAC database and typed the following SQL statements:

CREATE TABLE Birthdays (birthday DATE NOT NULL PRIMARY KEY)

GRANT SELECT ON Birthdays TO Paris;

GRANT SELECT ON Birthdays TO Romeo;

Juliet then inserted a number of values into the Birthdays table, only one of which was her real birthday. She then took Romeo

aside and whispered the month of her birthday into his ear. She then took Count Paris aside and whispered the day of her

birthday into his ear.

Romeo declared dejectedly: “I don’t know when your birthday is. But Count Paris doesn’t know either.”

Count Paris exclaimed excitedly: “At first I didn’t know when your birthday was. But now I do!”

Not to be outdone, Romeo exclaimed: “Now I do too!”

Count Paris whipped out his Samsung Galaxy S6 and ordered a dozen gourmet dipped swizzled strawberries from ediblearrange-

ments.com. It was too late for same-day delivery, so he ordered next-day delivery along with a card saying “Better Late Than

Never!” Juliet wasn’t thrilled but politely thanked Count Paris.

Romeo did not have a smartphone but he had a bike and, having worked as a bike messenger, he knew the streets of Verona

like the back of his hand. He pedaled furiously to the Edible Arrangements store on the next block where he bought a dozen gour-

met dipped swizzled strawberries and brought them back to Juliet. Juliet was thrilled because, more than anything, she loved to

receive gourmet dipped swizzled strawberries on her birthday.

And that’s how Romeo won the heart of Juliet. Our story ends with Count Paris singing another verse from Benvolio’s song:

“There are plenty of fish in the sea

But, oh, they’re hard to be caught.”

The obvious question remains: what was the day of the feast? s

http://ediblearrangements.com
http://ediblearrangements.com

22 February 2019

F R O M T H E
A R C H I V E

Fourth International
NoCOUG SQL Challenge

by Iggy Fernandez

In an interview for the NoCOUG Journal (http://www.
nocoug.org/Journal/NoCOUG_Journal_200608.
pdf#page=4), Steven Feuerstein was asked: “SQL is a set-
oriented non-procedural language; i.e., it works on sets and

does not specify access paths. PL/SQL on the other hand is a record-
oriented procedural language, as is very clear from the name. What
is the place of a record-oriented procedural language in the rela-
tional world?”

Steven replied: “Its place is proven: SQL is not a complete lan-
guage. Some people can perform seeming miracles with straight
SQL, but the statements can end up looking like pretzels created by
someone who is experimenting with hallucinogens. We need more
than SQL to build our applications, whether it is the implementa-
tion of business rules or application logic. PL/SQL remains the
fastest and easiest way to access and manipulate data in an Oracle
RDBMS, and I am certain it is going to stay that way for decades.”

To prove Steven correct, NoCOUG has held four interna
tional SQL challenges.

First International NoCOUG SQL challenge (2009)
An ancient 20sided die was discovered in the secret chamber

of mystery at Hogwash School of EsCueEl. A mysterious sym
bol was inscribed on each face of the die. The great Wizard of
Odds discovered that each symbol represents a number. He
also discovered that the die was biased: that is, it was more
probable that certain numbers would be displayed than others
if the die was used in a game of chance. The great wizard
recorded this information in tabular fashion as described
below.

Name Null? Type
FACE_ID NOT NULL INT
FACE_VALUE NOT NULL INT
PROBABILITY NOT NULL REAL

The great wizard then invited all practitioners of the ancient
arts of EsCueEl to create an EsCueEl spell to display the
probabilities of obtaining various sums when the die was thrown
“N” times in succession in a game of chance.

The contest was a great success; nine solutions were found by
participants in seven countries and three continents but the win
ner, Alberto Dell’Era from Italy, rose above the competition by
implementing Discrete Fourier Transforms and becoming
the first knight of the August Order of the Wooden Pretzel. You
can read an explanation of his wonderful solution at http://
www.nocoug.org/Journal/NoCOUG_Journal_200908.
pdf#page=14. Alberto also implemented Fast Fourier Transforms
but we won’t even go there.

Second International NoCOUG SQL Challenge (2011)
An ancient manuscript titled “Love Your Data” was discov

ered in the secret chamber of mystery at Hogwash School of Es
CueEl. The manuscript was covered with mysterious words and
the great Wizard of Odds implored contestants to create an Es
CueEl spell that revealed the secret message. Here is a short
excerpt from the ancient manuscript.

 A
 COMPREHENSION ABILITY OLD
 ABOUT
 ALWAYS
 SCIENCE AND PHYSICS
 ANY
 AS
 SO ASK ABILITY

Andre Araujo (Australia), Rob van Wijk (Netherlands), and
Ilya Chuhnakov (Russia) submitted solutions and became the
second, third, and fourth knights of the August Order of the
Wooden Pretzel. Ilya submitted two solutions: one using the
MODEL clause and one using recursive common table expres
sions. You can read their wonderful solutions in the 100th issue of
the NoCOUG Journal (http://www.nocoug.org/Journal/
NoCOUG_Journal_201111.pdf#page=20).

Third International NoCOUG SQL Challenge (2012)
The Wicked Witch of the West had invited six friends to the

Third Annual Witching & Wizarding Ball at Pythian Academy of
EsCueEl & NoEsCueEl. Burdock Muldoon and Carlotta
Pinkstone both said they would come if Albus Dumbledore
came. Daisy Dodderidge said she would come if Albus Dumble
dore and Burdock Muldoon both came. And so on and so forth.
The Wicked Witch of the West needed an EsCueEl or NoEs
CueEl spell to determine whom she needed to persuade to at
tend the wizarding ball in order to ensure that all her invitees
attended.

Master sorcerer Lukasz Plata of Poland not only solved the
problem with a single SQL statement but provided a proof that
his solution was correct. He became the fifth knight of the
August Order of the Wooden Pretzel. You can read his wonderful
solution at http://www.nocoug.org/Journal/NoCOUG_
Journal_201211.pdf#page=12.

Fourth International NoCOUG SQL Challenge (2015)
The fourth challenge was published in the May 2015 issue

of the NoCOUG Journal (http://www.nocoug.org/Journal/
NoCOUG_Journal_201505.pdf#page=22) and was quite unlike
the first three challenges. The first three challenges required the

http://www.nocoug.org/Journal/NoCOUG_Journal_200608.pdf#page=4
http://www.nocoug.org/Journal/NoCOUG_Journal_200608.pdf#page=4
http://www.nocoug.org/Journal/NoCOUG_Journal_200608.pdf#page=4
http://www.nocoug.org/Journal/NoCOUG_Journal_200908.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_200908.pdf#page=14
http://www.nocoug.org/Journal/NoCOUG_Journal_200908.pdf#page=14
http://www.nocoug.org/Journal/NoCOUG_Journal_200908.pdf#page=14
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=20
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=20
http://www.nocoug.org/Journal/NoCOUG_Journal_201211.pdf#page=12
http://www.nocoug.org/Journal/NoCOUG_Journal_201211.pdf#page=12
http://www.nocoug.org/Journal/NoCOUG_Journal_201505.pdf#page=22
http://www.nocoug.org/Journal/NoCOUG_Journal_201505.pdf#page=22

23The NoCOUG Journal

contestants to devise an efficient mathematical algorithm and
then implement it using SQL. For example, the winning solution
to the first challenge used advanced mathematical techniques
called “convolutions” and “Fourier transforms.” This is not a
typical use of SQL in the real world. Also, contestants in the first
three challenges sent their entries directly to NoCOUG (though
they were free to publish their entries on their own websites or
blogs).

The fourth challenge on the other hand did not require con
testants to be expert mathematicians. Instead the challenge was
an exercise in logic and in interpreting a “functional specifica
tion.” This is closer to the uses of SQL in the real world. Also,
contestants posted their solutions on the NoCOUG blog (https://
nocoug.wordpress.com/2015/05/11/fourth-international-
nocoug-sql-challenge/). This meant that all the contestants
benefited from the work of others.

The challenge was a disguised variant of the problem called
“Cheryl’s Birthday” that was featured in the 2015 Singapore and
Asian Schools Math Olympiad for 14yearold students.

Albert and Bernard just became friends with Cheryl, and they
want to know when her birthday is. Cheryl gives them a list of 10
possible dates:

May 15 16 19
June 17 18
July 14 16
August 14 15 17

Cheryl then tells Albert and Bernard separately the month
and the day of her birthday respectively.

➤ Albert: I don’t know when Cheryl’s birthday is, but I know
that Bernard doesn’t know too.

➤ Bernard: At first I don’t [sic] know when Cheryl’s birthday
is, but I know now.

➤ Albert: Then I also know when Cheryl’s birthday is.
So when is Cheryl’s birthday? (https://en.wikipedia.org/

wiki/Cheryl%27s_Birthday)
NoCOUG tried to disguise the problem by using characters

from Shakespeare’s play Romeo and Juliet. Albert became Romeo
and Cheryl became Juliet.

Once upon a time, Romeo, the son of Montague, told his
cousin Benvolio that he was in love with Rosaline but she was not
returning his affections. Benvolio sang a song by the great
Ameri can songwriter Stephen Foster:

“There are plenty of fish in the sea
As good as ever were caught.”

Meanwhile, Count Paris, a relative of Prince Escalus, asked for
the hand of Juliet, daughter of Capulet, in marriage. Capulet or
ganized a grand feast and invited Count Paris. Juliet agreed to
talk to Count Paris at the feast. Benvolio suggested that Romeo
gatecrash the feast so that Romeo could meet other women.
Romeo agreed, but only because Rosaline would also be at the
feast. At the feast, Romeo instantly fell in love with Juliet and
completely forgot about Rosaline. Romeo then sang another
song by maestro Stephen Foster.

“I dream of Juliet with the light brown hair,
Borne, like a vapor, on the summer air;

I see her tripping where the bright streams play,
Happy as the daisies that dance on her way.”

Very melodramatic. The solution is iteratively obtained by
applying each clue in turn:

➤ The first clue has two parts: Albert (who has been told the
month by Cheryl) cannot uniquely determine the day at
this stage in the game (Clue 1a) and knows that Bernard
(who has been told the day by Cheryl) cannot uniquely
determine the month at this stage in the game (Clue 1b).
By applying Clue 1a, we (the public) can eliminate all
months which only contain a single candidate day (there
are no such months in the sample data above) and, by ap
plying Clue 1b, we can eliminate all months which contain
a candidate day that is unique (because if Cheryl’s birthday
occurred in such a month, then there remains a possibility
that Bernard could determine the month at this stage in
the game if the day given to him by Cheryl was unique).
Clue 1a does not help us here but Clue 1b allows us to
eliminate all days in May and June from contention.

➤ The second clue (Clue 2) is that Bernard (who has only
been told the day by Cheryl) is able to use Clue 1a and
Clue 1b to uniquely determine the month. We (the public)
still don’t know Cheryl’s birthday, but, by applying Clue 2,
we can eliminate July 14 and August 14 from contention
because, if either one of them was Cheryl’s birthday, then
Bernard would not have been able to uniquely determine
the month. Only July 16, August 15, and August 17 are left
in contention.

➤ The third clue (Clue 3) is that Albert (who has only been
told the month by Cheryl) is able to use the previous clues
(and hence knows that only July 16, August 15, and Aug
ust 17 are in contention) to uniquely determine the day.
We (the public) can therefore eliminate August 15 and
Aug ust 17 from contention because Albert would not have
been able to uniquely determine the day if Cheryl’s birth
day had been in August (since August contains two can
didate days that are still in contention).

This leaves only July 16 in contention. Cheryl’s birthday must
be on July 16.

Assuming that the data is stored in a table called Dates with a
single column called DateOfBirth, the above exercise in logic can
be expressed in SQL as follows:

select
 m, d
from (
 select
 m, d,
 count(*) over (partition by m) as m_count
 from (
 select
 m, d,
 count(*) over (partition by d) as d_count
 from (
 select
 m, d, m_count,
 min(d_count) over (partition by m) as min_d_count
 from (
 select
 m, d,
 count(*) over (partition by m) as m_count,
 count(*) over (partition by d) as d_count
 from (
 select distinct
 extract(month from dateofbirth) as m,
 extract(day from dateofbirth) as d
 from dates

https://nocoug.wordpress.com/2015/05/11/fourth-international-nocoug-sql-challenge/
https://nocoug.wordpress.com/2015/05/11/fourth-international-nocoug-sql-challenge/
https://nocoug.wordpress.com/2015/05/11/fourth-international-nocoug-sql-challenge/
https://en.wikipedia.org/wiki/Cheryl%27s_Birthday
https://en.wikipedia.org/wiki/Cheryl%27s_Birthday

24 February 2019

)
)
)
 -- Clue 1a and Clue 1b
 where m_count > 1 and min_d_count > 1
)
 -- Clue 2
 where d_count = 1
)
-- Clue 3
where m_count = 1

The original goal specified in the challenge announcement
was an ANSIstandard SQL query of minimum length. However,
NoCOUG did not list the candidate dates and required that the
solution be able to process all data sets that fit the rest of the
story. Perhaps because Cheryl’s Birthday was a wellknown prob
lem, perhaps because contestants were influenced by the work of
others, or perhaps because of sheer subtlety, all the contestants
initially missed Clue 1a. The initial set of solutions were there
fore incorrect. Since the logic of the solution was now an open
secret, the original goal of minimum length was discarded.
Chris Goerg from Germany then submitted the following
correct solution using the MODEL clause.

with d as (
 select unique
 extract(month from dateofbirth) m,
 extract(day from dateofbirth) d
 from dates
)
select m, d from (
 select * from d
 model
 dimension by (m, d)
 measures(0 s, 0 t)
 rules (

 -- Count the number of times each day is duplicated
 -- Store the count in s

 s[m,d] = sum(1)[m, cv()],

 -- Apply Clue 1a and Clue 1b
 -- Set t to 1 if a date is still in contention

 t[m,d] = case
 when min(s)[cv(), d] > 1 and sum(1)[cv(), d] > 1
 then 1
 end,

 -- Apply Clue 2
 -- Count the number of times each day is duplicated
 -- Store the result in s
 -- Only dates with s = 1 remain in contention after this point

 s[m,d] = case
 when t[cv(), cv()] = 1
 then sum(t)[m, cv()]
 end,

 -- Apply Clue 3
 -- Count the number of dates still in contention in each month
 -- Store the result in t
 -- Only dates with s = 1 and t = 1 remain in contention after this point

 t[m,d] = sum(case when s = 1 then 1 end)[cv(), d]
)
)
where s = 1
and t = 1

The secret of Chris’s solution is his use of two measures (s and
t), not just one. Both measures are initialized with the value 0.
We can visualize the progress of his solution with a little PIVOT
magic:

select * from (
with d as (
 select unique
 extract(month from dateofbirth) m,
 extract(day from dateofbirth) d
 from dates
)
select * from (
 select * from d
 model
 dimension by (m, d)
 measures(0 s, 0 t)
 rules (
 -- Add rules here
)
)
)
pivot (min(nvl(to_char(s),’-’)||’|’||nvl(to_char(t),’-’))
for d in (14,15,16,17,18,19))
order by m;

The following tableaus show the progression of his solution.
In the initial tableau, both s and t are set to 0.

 M 14 15 16 17 18 19
 5 0|0 0|0 0|0
 6 0|0 0|0
 7 0|0 0|0
 8 0|0 0|0 0|0

 M 14 15 16 17 18 19
 5 2|0 2|0 1|0
 6 2|0 1|0
 7 2|0 2|0
 8 2|0 2|0 2|0

 M 14 15 16 17 18 19
 5 2|- 2|- 1|-
 6 2|- 1|-
 7 2|1 2|1
 8 2|1 2|1 2|1

 M 14 15 16 17 18 19
 5 -|- -|- -|-
 6 -|- -|-
 7 2|1 1|1
 8 2|1 1|1 1|1

 M 14 15 16 17 18 19
 5 -|- -|- -|-
 6 -|- -|-
 7 2|1 1|1
 8 2|2 1|2 1|2

Chris was judged the winner on the grounds of novelty and
originality. He wins an Apple Watch Sport and becomes the sixth
knight of the August Order of the Wooden Pretzel. s

© 2015 Iggy Fernandez

Next, count the number of times each day is duplicated and
store the count in s.

Next, apply Clue 1a and Clue 1b. Set t to 1 if a date is still in
contention.

Next, apply Clue 2. Count the number of times each day is
duplicated and store the result in s. Only dates with s = 1 remain
in contention after this point.

Next, apply Clue 3. Count the number of dates still in conten
tion in each month. Store the result in t. Only dates with s = 1
and t = 1 remain in contention after this point.

25The NoCOUG Journal

P I C T U R E
D I A R Y

NoCOUG Conference #128
Post-Conference Reception Hosted by Axxana

Penny Avril told us what’s new and coming next in Oracle Database

The raffle winner is blank!

26 February 2019

NoCOUG Conference #128
Post-Conference Reception Hosted by Axxana

Networking reception

Mandatory Kamran picture

NoCOUG webmaster reunion: Vadim Barilko (right) and Eric Hutchinson (left).

NoCOUG Conference #128
Post-Conference Reception Hosted by Axxana

Supercharge Oracle
Performance with
Vexata NVMe Arrays

Accelerates OLTP & Analytic
workloads

Deploys with FC SANs or
Gigabit Ethernet Fabrics

Unmatched low-latency IOPS
and throughput

DATABASE MANAGEMENT SOLUTIONS
Develop | Manage | Optimize | Monitor | Replicate

Maximize your
Database Investments.

https://www.vexata.com
https://www.quest.com/solutions/database-management/

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

!"#$%#"&'()!!
*!)++$+

!"#$%&'()*+*,'-#./0#/1 ()*+*,'!"#$%&'2.+*,'
3*'345'5&06"/

()*+*,'!"#$%&'2.+*,'
378#*$&7'39:'9/"#/&,+&.

;&"<6"=#*$&'3*#%>.+.'
3*7'()*+*,

(32?:('@A'

!"#$%&"!'&()*+

http://www.solarwinds.com/dpa-download
http://orapub.com
mailto:support%40orpub.com?subject=

	_GoBack
	_GoBack

